国产精品一区二区美女视频|成人精品高清免费区无码久久|日韩久久久久久拔插拔插|男人a天堂手机在线版

產(chǎn)品中心 應(yīng)用方案 技術(shù)文摘質(zhì)量保證產(chǎn)品選型 下載中心業(yè)內(nèi)動態(tài) 選型幫助 品牌介紹 產(chǎn)品一覽 聯(lián)系我們

電話:010-84775646
當(dāng)前位置:首頁 >> 技術(shù)文摘 >> 詳細內(nèi)容
基于GMR傳感器陣列的生物檢測研究
來源:賽斯維傳感器網(wǎng) 發(fā)表于 2011/5/27

  0  引  言

  生物傳感器的研究具有巨大的應(yīng)用前景,近年來,隨著電子自旋現(xiàn)象的發(fā)現(xiàn),結(jié)合了半導(dǎo)體微電子工藝制備的GMR設(shè)備,在生物檢測領(lǐng)域引起了人們越來越濃厚的研究興趣,使其成為傳統(tǒng)生物檢測方法的替換方案之一。由于其獨特的物理特性,GMR傳感器比電子傳感器更靈敏、可重復(fù)性強,具有更寬的工作溫度、工作電壓和抗機械沖擊、震動的優(yōu)異性能,而且GMR傳感器的工作點也不會隨時間推移而發(fā)生偏移。GMR傳感器的制備成本和檢測成本低,對樣本的需求量很小。由GMR傳感器組成的陣列,還可以結(jié)合現(xiàn)有的IC工藝,提高整體設(shè)備的集成度,進行多目標(biāo)的檢測。同時,對比傳統(tǒng)的熒光檢測法,磁性標(biāo)記沒有很強的環(huán)境噪聲,標(biāo)記本身不會逐漸消退,也不需要昂貴的光學(xué)掃描設(shè)備以及專業(yè)的操作人員。因此,無論是傳感器本身的性能,還是磁性標(biāo)記的特點,都決定了GMR傳感器陣列在生物檢測領(lǐng)域的研究具有較高的應(yīng)用價值和實踐意義。

  1  巨磁阻陣列傳感器生物檢測的基本原理

  1.1  巨磁阻(GMR)效應(yīng)

  1988年派瑞松大學(xué)的研究人員發(fā)現(xiàn)了GMR效應(yīng),這是一種在鐵磁性層與非鐵磁性層交替疊置的結(jié)構(gòu)中觀測到的量子效應(yīng),是指某些磁性或合金材料的磁電阻在一定磁場作用下急劇減小,而△ρ/ρ急劇增大的特性,一般增大的幅度比通常的磁性與合金材料的磁電阻約高10倍。GMR效應(yīng)的理論很復(fù)雜,許多機理至今還不清楚,目前普遍接受的解釋是兩流模型,如圖1所示。多個鐵磁層中的磁矩方向由施加的外磁場控制,當(dāng)鐵磁性層的磁矩反平行排列時見圖1(a),載流子受到的自旋散射最大,多層膜電阻最高;當(dāng)鐵磁性層的磁矩平行排列時見圖1(b),載流子受到的自旋散射最小,多層膜的電阻最低。

 

 

  目前,按其結(jié)構(gòu)、GMR材料可分為具有層間偶合特性的多層膜(例如Fe/Cr)、自旋閥多層膜(例如FeMn/FeNi/Cu/FeNi)、顆粒型多層膜(例如Fe-Co)和鈣鈦礦氧化物型多層膜(例如AMnO3)等。

  1.2  巨磁阻(GMR)的電子特性

  圖2是一個典型的多層GMR材料在外加磁場下的電阻變化情況。圖2中的輸出表明,無論是正向還是反向的外加磁場變化,都能帶來相同的磁阻變化,也就是說GMR效應(yīng)是全極性的。曲線的斜率體現(xiàn)了磁性敏感程度,通常以V(mV)/Oe為單位。當(dāng)阻值不隨磁場繼續(xù)變化時,磁性材料就達到了其磁性飽和區(qū)。兩條曲線中的偏移是磁性材料的磁滯導(dǎo)致的,從零磁場到飽和磁場所帶來的阻值變化就稱為磁阻。

 

 

  1.3 GMR陣列傳感器生物檢測的基本模式

  用GMR陣列傳感器進行生物檢測,是以磁性顆粒為標(biāo)記物,采用直接標(biāo)記法或兩步標(biāo)記法,在施加一定方向的外加磁場的情況下,用磁敏傳感器對磁性標(biāo)記產(chǎn)生的寄生磁場進行檢測,從而實現(xiàn)對生物目標(biāo)定性定量分析。圖3分別介紹了磁性標(biāo)記法檢測的具體步驟:

 

 

  直接標(biāo)記法  如圖3(a)所示,直接標(biāo)記法是將標(biāo)記物直接結(jié)合到探針上。首先在傳感器表面結(jié)合特定的生物探針,再將已預(yù)先綁定磁性顆粒的樣本溶液加入傳感器的反應(yīng)池中,溶液中特定的目標(biāo)分子被探針捕獲,完成標(biāo)記。

  兩步標(biāo)記法  如圖3(b)所示,以DNA檢測為例,第一步將已知序列的DNA探針鏈結(jié)合在包埋了自旋閥傳感器的芯片表面,加入用生物素標(biāo)記的DNA目標(biāo)鏈溶液,進行充分雜交;第二步,加入被抗生物素包裹的磁性顆粒,形成生物素一抗生物素共價鍵,從而選擇性地捕獲磁性標(biāo)記。

  標(biāo)記反應(yīng)完成后,用外加梯度磁場將未參與標(biāo)記的多余磁性顆粒分離,再施加激勵磁場將磁標(biāo)記(磁性顆粒)磁化,磁化的磁標(biāo)記產(chǎn)生的寄生磁場引起傳感器阻值的變化,從而導(dǎo)致反映生物反應(yīng)的信號輸出。

  2 GMR生物檢測系統(tǒng)設(shè)計

  當(dāng)前,國際國內(nèi)已經(jīng)開展了基于不同技術(shù)的生物磁場檢測設(shè)備研究,涉及自旋閥傳感器(Spin Valves)、感應(yīng)傳感器(Inductive Sensors)、超導(dǎo)量子干涉儀(SQUIDs)、各向異性磁阻(AMR)環(huán)式傳感器、小規(guī)模的霍耳組合傳感器(Hall Crosses)以及隧道結(jié)(TMR)傳感器等。

  1998年,作為美國國防部高級研究規(guī)劃局(DAR-PA)支持項目,美國海軍研究實驗室與NVE公司合作,由David R.Baselt等開展了基于巨磁阻技術(shù)的生物傳感器研究,并設(shè)計制備了兩代GMR傳感器的磁珠陣列計數(shù)器(BARCⅡ,BARCⅢ)進行生物雜交分析,并用于測量在單個分子水平上的DNA-DNA,以及抗體抗原對和受體-配體對的結(jié)合力。德國比勒菲爾德(Bielefeld)大學(xué)、美國佛羅里達州立大學(xué)、美國斯坦福大學(xué)、葡萄牙國立計算機系統(tǒng)與工程研究所(INESC-MN)等研究機構(gòu)也相繼開展了磁性傳感器陣列的生物檢測研究。國內(nèi)多所高校和研究所,如中科院物理研究所、清華大學(xué)、同濟大學(xué)、電子科技大學(xué)、中山大學(xué)等,自2005年起,對巨磁阻生物傳感器陣列設(shè)計、傳感器材料的選取、磁性標(biāo)記與傳感器尺寸關(guān)系、輸出信號處理等方面進行了廣泛的研究,實現(xiàn)了單個納米尺度顆粒的檢測,并申請了相關(guān)的專利。

  上述研究中采用的陣列方案和傳感器形態(tài)各異,從布局上可以類分為規(guī)則排列陣列或分區(qū)排列陣列;矩形傳感器或蛇形傳感器。

 

 

  圖4(a)是Glaanxiong Li等在約7 mm×8 mm的芯片表面上制備的自旋閥傳感器陣列,陣列包含60個亞微米級的條形自旋閥傳感器,呈2個縱列排列,每列30個傳感器單元,每個單元兩頭通過ion束沉積厚約300 nm的鋁作為引線,而中間未被覆蓋的條形區(qū)域作為生物反應(yīng)區(qū),用于感應(yīng)與其易軸同向的磁場分量。

  圖4(b)是David R.Baselt等設(shè)計制備的含66個GMR單元的傳感器陣列(BARCⅢ),分為8個反應(yīng)區(qū),每區(qū)8個單元,可進行多路檢測。其單元呈圓形,直徑為200 μm,由長8 mm寬1.6μm的電阻蛇形蜿蜒而成。

 

 

  通常,整個GMR生物檢測系統(tǒng)由微流部分、GMR陣列、驅(qū)動部分、分析處理部分組成。為了減少外界環(huán)境對傳感器輸出穩(wěn)定性的影響,傳感器單元往往與參考單元一起組成惠斯通電橋。如圖5所示,GMR電阻對組成惠斯通半橋,其中一個電阻表面覆蓋軟磁性屏蔽層,不受外加磁場的影響;另一個電阻作為應(yīng)變電阻,在GMR效應(yīng)作用下,阻值隨外加磁場變化,導(dǎo)致電橋輸出微伏級的差分電壓值,輸出的電壓經(jīng)過過濾、放大等處理后,再輸送到后端的采集檢測設(shè)備,做進一步分析。

  3  系統(tǒng)性能分析與討論

  Darid R.Baselt等1998年研制的GMR生物傳感器,由于信噪比的限制,只能實現(xiàn)在每80 μm×5 μm的區(qū)域上探測到一個磁珠(直徑為2.8 μm);2002年,Schotter等人實現(xiàn)了對低磁珠密度(16 pg/μl)被測樣品的探測;2005年,INESC公司采用U型自旋閥結(jié)構(gòu)制作GMR生物傳感器,其工作頻率從傳統(tǒng)的200 Hz降低到了30 Hz,使得熱噪聲更低( );2005年,加利福尼亞大學(xué)物理系D.K.Wood等人研制的亞微型新一代GMR生物傳感器,可實現(xiàn)對小尺寸磁珠(直徑200 nm)的探測,且靈敏度更高( )。雖然磁性生物檢測系統(tǒng)取得一定的成績,但距離實用化仍有很大的距離。

  綜合現(xiàn)有技術(shù),提高磁性生物檢測系統(tǒng)的性能,可以在傳感器特性、磁性顆粒的選擇以及外圍電路的設(shè)計等方面進行改進。

  3.1傳感器靈敏度

  GMR傳感器靈敏度是指其對微弱信號的感應(yīng)能力。由于磁性標(biāo)記體積非常小,所以產(chǎn)生的寄生磁場也非常微弱,因此必須選用靈敏度高的磁性材料制備傳感器。衡量GMR性能的兩個最基本參數(shù)是:

  (1)在一定溫度下所能達到的最大GMR值;

  (2)獲得最大GMR效應(yīng)所需施加的飽和外磁場強度。

  在各種巨磁電阻材料中,多層膜和顆粒膜飽和磁場高達數(shù)特斯拉,其磁場靈敏度低;氧化物陶瓷類材料飽和場極高,難以實現(xiàn)實用化;自旋閥材料飽和磁場較低,僅為幾個或幾十奧斯特,但室溫下GMR不高。因此,尋求GMR值高,飽和磁場低,磁場靈敏度高的合金體系或人工薄膜結(jié)構(gòu)是GMR傳感器生物檢測實用化的難點和重點。

  目前,從制作的難易程度、性能的穩(wěn)定性等方面來考慮,傳感器陣列多采用GMR多層膜耦合結(jié)構(gòu)和自旋閥結(jié)構(gòu),隨著研究工作的逐步深入,將來具有更高磁阻率的結(jié)構(gòu),如隧穿磁阻(TMR)、稀土氧化物、微晶或非晶軟磁合金薄膜,以及利用巨磁阻抗效應(yīng)(GMI)的高靈敏傳感器,將在磁性生物陣列檢測中得以應(yīng)用。

  3.2磁性微粒的尺寸與磁性含量

  在整個系統(tǒng)中,生物特異性反應(yīng)通過磁性微粒的存在與數(shù)量來體現(xiàn)。目前采用的磁性顆粒(如γ-Fe2O3,F(xiàn)e3Ot,NiFe等)可分為微米級和亞微米級兩類,較大的磁性顆粒(約1~3μm)在形狀上比較容易實現(xiàn)統(tǒng)一,雖然磁性物質(zhì)含量較低(約15%),但相對較大的體積,磁性微粒在傳感器表面產(chǎn)生的磁場分量仍然較大,另外,大體積也便于顯微計數(shù)。其缺點是無法高密度地綁定在傳感器表面,因此檢測到的生物分子較少。納米尺度的磁性顆粒具有很高的磁性含量(70%~80%),但是由于制備工藝的限制,同一批次,其大小和形狀都有較大差異,對定量分析非常不利。而且,體積小的納米磁性顆粒容易快速簇集,導(dǎo)致輸出的信號失真。但是,采用敏感度更高的傳感器和更先進的檢測分析系統(tǒng),可以部分滿足小體積磁性顆粒的應(yīng)用要求,2005年,美國斯坦福大學(xué)Guanxiong Li等實驗驗證了當(dāng)自旋閥傳感器陣列尺寸與磁性顆粒尺寸(直徑為16 nm的超順磁Fe3O4顆粒)相近時,傳感器輸出信號與綁定的顆粒數(shù)量呈比較理想的正比關(guān)系,從而體現(xiàn)了采用小體積納米磁性標(biāo)記,自旋閥傳感器陣列在生物檢測中的定量分析能力。

  3.3傳感器陣列的物理參數(shù)

  GMR傳感器合適的層厚可以保證兩個磁性層反平行耦合,從而保證在沒有外加磁場的情況下,設(shè)備處于高電阻值狀態(tài)。另外,因為GMR傳感器的電阻值主要取決于電子自旋散射,所以其層厚必須比大部分材料中電子的平均自由程(約幾個納米)小,典型的GMR磁性傳感器的層厚大約是2~6 nm。

  同時,采用與生物分子尺度相同的傳感器(蛋白質(zhì)、DNA、RNA和*等都在1~100 nm的尺度范圍),能夠有效增加檢測的靈敏度。目前,受制于制備的復(fù)雜性,減小傳感器的尺寸仍然十分困難,國內(nèi)研究機構(gòu)應(yīng)用傳統(tǒng)的光學(xué)光刻技術(shù),受光波波長和數(shù)值孔徑等因素的限制,難以制作線寬小于100 nm的圖案。然而更先進的極端遠紫外光刻、電子束直寫、離子投影光刻技術(shù)、X光光刻、電子束投影等技術(shù)雖然能克服上述限制,但系統(tǒng)復(fù)雜,造價十分昂貴。因而,基于傳統(tǒng)光刻技術(shù)上改進的浸沒式光刻系統(tǒng)、微接觸印刷、納米壓印光刻等新的制備技術(shù),將是基材表面批量獲取納米量級GMR傳感器陣列中最具潛力的技術(shù)。

  除傳感器本身的物理參數(shù)外,GMR傳感器對磁場的距離也非常敏感,磁性顆粒的寄生磁場隨其與傳感器敏感層的距離呈3階衰減,所以,應(yīng)盡量減小傳感器與磁性標(biāo)記之間的距離,以減少對傳感器靈敏度的過高要求。但是,在實際檢測中,為了防止傳感器表面被生物溶液侵蝕和牢固結(jié)合生物探針,又必須在傳感器表面覆蓋保護層(7 nm PEI/PMMA;1 μm氮化硅)和生物結(jié)合層(金屬材料、玻璃、石英或表面為氧化硅的硅片)。因此,超薄惰性材料和生物結(jié)合材料的發(fā)現(xiàn)與工藝的提高也是提高磁性生物檢測系統(tǒng)性能必不可少的條件。

  3.4外加磁場

  檢測中需要外加激勵磁場磁化超順磁顆粒,針對不同的磁性傳感器,磁性激勵場可以平行于傳感器表面,也可以垂直于傳感器表面。平行方式相對優(yōu)于垂直方式,當(dāng)傳感器上方不存在磁性微粒時,平行方式不會產(chǎn)生信號輸出,而且激勵場即使有一定的角度偏轉(zhuǎn),也不會導(dǎo)致片上分量的產(chǎn)生。另外,激勵場可以采用直流激勵場或交流激勵場,在交流激勵場作用下,傳感器輸出交流信號,通過鎖相放大技術(shù),可以獲得較高的信噪比,方便信號的提取。但是,相比DC激勵場而言,AC激勵場會導(dǎo)致電磁干擾,需要在后端設(shè)計交流EMI濾波及整流濾波電路,增加了電路復(fù)雜性。另外,外加交流激勵磁場頻率需要均衡考慮,如果過高,系統(tǒng)中的感性阻抗元件(如電磁鐵等)會使電橋輸出的信號大幅減弱;如果激勵磁場頻率太低,又會增加1/f噪聲。對于某些GMR傳感器,還需要外加偏置磁場,用于固定自由層、控制傳感器工作在線性區(qū)間以及防止磁性微粒的初始極化。然而亞微米級的傳感器,由于其自由層已處于單磁疇狀態(tài),可以不施加偏置場,從而提高自由層磁化時的自由度,增加傳感器在易軸的敏感性。

  3.5采用信號放大技術(shù)

  由于GMR傳感器陣列輸出的信號非常微弱,并且信號中不可避免地存在1/f噪聲和散粒噪聲,為了精確測量掩埋在噪聲中生物信號的幅值及相位,通常用前置低噪聲放大器、帶通濾波器、可控增益放大器、相敏檢測電路、正交移相電路、差分直流放大電路等組成的鎖相放大設(shè)備來抑制差模噪聲和共模噪聲,對傳感器輸出的信號進行預(yù)處理。

  4結(jié)語

  利用GMR傳感器組成陣列,對磁性標(biāo)記的生物分子的檢測進行研究工作已經(jīng)開展了近十年,這里就檢測方法的基本原理、發(fā)展情況、影響檢測效果的各項因素進行介紹和分析。目前制約GMR傳感器陣列生物檢測性能的關(guān)鍵是制備工藝和材料的問題,在進一步的研究中,需要采用生物分子尺度相同、高靈敏的新型GMR傳感器,研究新的生物機能性保護膜,在避免互擾的基礎(chǔ)上,在芯片上布局更密集、有效生物結(jié)合面更大的陣列,改善傳感器的線性度,保證亞微米級的超順磁顆粒形態(tài)的均一,才能有效促進GMR優(yōu)越感器陣列在生物檢測上的應(yīng)用。

  轉(zhuǎn)載請注明來源:賽斯維傳感器網(wǎng)(ywhs9.com


 

     如果本文收錄的圖片文字侵犯了您的權(quán)益,請及時與我們聯(lián)系,我們將在24內(nèi)核實刪除,謝謝!
  產(chǎn)品查找
應(yīng)用方案

加速計聲波傳感器微熔式力傳感器Schaevitz RV工業(yè)稱重傳感器Shcaevitz LV板裝表貼式壓力傳感器板載式壓力傳感器微熔式不銹鋼隔離壓力變送汽車碰撞專用加速度計

精品推薦
首頁 | 企業(yè)簡介 | 聯(lián)系我們 | 常見問題 | 友情鏈接 | 網(wǎng)站導(dǎo)航 | copyright©2007-2010,sensorway.cn.All Rights Reserved.京ICP備07023885號
国产精品一区二区美女视频|成人精品高清免费区无码久久|日韩久久久久久拔插拔插|男人a天堂手机在线版